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A Computer-Based Decision Support System for Breast Cancer Diagnosis 

Introduction 

The goal of this pre-doctoral training project is to develop decision support system for 
breast cancer diagnosis, treatment option, prognosis, and risk prediction. This system is 
desired to function as a consultation system for both doctors and patients. This project 
focuses on the development of advanced image pattern analysis in diagnostic imaging and 
information integration methodology to statistically analyze the distinction between lesion- 
like normal site and real lesion site. Based on our intensive observation and experimental 
evidence, we believe this problem can be better solved through statistical approach. The 
specific aims of this research project are: (1) image pattern analysis of breast tissue in 
mammography using both computational features and BI-RADS features provided by 
radiologist for the prediction of malignancy associated with masses; (2) development of 
visual presentation methods for radiologists' use in the consultation system; (3) performing a 
pre-clinical test through an ROC analysis. The clinical goal of this consultation system is to 
provide scientific tools for doctors to have electronic magnification views, to perform feature 
analysis of suspected mammographic patterns, to access a large database and investigate 
clinically similar cases, and to visually inspect the features of a case in various statistical 
distribution using graphic displays. In the whole period of this research, we have 
accomplished (1) feature extraction, (2) feature database construction, (3) high dimensional 
data mining visual explanation tool development, (4) feature database structure exploration 
using visual exploration tool, (5) feature ranking and selection based on feature database 
structure exploration, and (6) neural network classifier designing based on selected features 
through feature database structure analysis. 



Overview of Training and Research Accomplishment 

1. Research Skill Training and Literature Background Preparation 

In the whole period of doctoral training, the development of research skill is very 
much appreciated through working with the mentors of this, which made it possible for 
me to continue my research work and further obtain the advanced degree. From the first 
program for reading and digital mammogram for processing, to the selection of cases, 
and then to the understanding of fundamental engineering components that are essential 
for the research, my academic advisor Dr. Yue Wang at The Catholic University of 
America, my mentors Dr. Shih-Chung Lo and Dr. Matthew Freedmen at Georgetown 
University Medical Center, provided as much tremendous help as they can. After one 
year of research work, my insight on research approaches and capability of problem 
solving have been gradually established and improved. We often discussed and reviewed 
the primary goal of this project in the research process in order to keep my work in the 
right direction and give a global view of the all components of CAD. They helped me 
write better programs for image processing, and discussed the intermediate results of 
calculation with me for further research planning. Comparing to myself two years ago 
before working on this project, I see big difference, and I am very grateful. 

Under the guidance of Dr. Wang and Dr. Lo, literature and book searching and 
reading gave me better and broader view of breast cancer and computer-assisted 
diagnosis (CAD) system research. Through reading engineering textbooks, the 
fundamental knowledge that is critical to the project is greatly enhanced. The major 
books I have been reading and using as all-time references are Neural Network - A 
Comprehensive foundation by Simon Haykin, An Introduction to Signal Detection and 
Estimation by H. Vincent Poor, Elements of Information Theory by Thomas M. Cover, 
and,Statistical analysis of finite mixture distributions by D. M. Titterington, A. F. M. 
Smith, and U. E., etc. After searching and technical papers in several major engineering 
journals, such as IEEE Transactions on Medical Imaging, IEEE Transactions on Neural 
Network, IEEE Transactions on Pattern Recognition and Machine Intelligence, and 
Medical Physics, etc., I have collected almost one hundred of relevant papers in order to 
have an overview of work done by other researchers in this particular area, and also set a 
start point and direction for my own research. The more I read, the better my capability of 
understanding and judging other researchers' work. After two years of intensive literature 
reading, I not only learned many advanced engineering components, but also gradually 
learned scientific method for problem solving. 

2. Research Accomplishments 

2.1 Clinical Case and Feature Database Development 

2.1.1    Clinical Case Selection 

The first step for establishing a feature database was primarily finished in the first 
and second years, which is case collection and selection that are fundamental and 



crucial for the further research work. In order to detect suspicious mass regions from 
a mammogram, we have to be able to find out major differences between mass and 
non-mass regions so that both mass and non-mass case groups are needed for 
comparison purpose. The major mammogram sample source that can be accessed and 
are found proper for the use in this project is ISIS at Georgetown University Medical 
Center. The ISIS database is constructed by extracting suspicious mass regions from 
mammograms by licensed radiologists and finally proven by biopsy procedure, from 
where we obtained 103 cases, among these 71 are mass cases and 32 are non-mass 
cases. Non-mass cases were purposely selected from normal breast tissue regions 
with similarity of mass. 

2.1.2    Image Feature Extraction 

After the preparation of mammogram cases, the next important consideration is to 
choose features that can be used to distinguish mass and non-mass cases effectively 
and with high detective rate. The image block was first processed by enhanced 
segmentation procedure to extract the exact position where a mass may present. The 
position of the segmented area was then a very useful reference for feature 
calculation. Many features have been tested by other researchers on their 
effectiveness for mass and non-mass distinction, and the results have been presented 
in their most recent papers. Based on literature and medical book searching and 
reading, primarily we chose nine features, among them are eight texture features and 
shape feature. 

Eight texture features were calculated based spatial gray level dependence matrix, 
they are energy, correlation, inertia, entropy, inverse difference moment, sum 
average, sum entropy, and difference entropy. Texture feature, in some scale, may be 
fairly good for revelation of fine texture differences in images, which cannot be seen 
by human eyes. They were examined by several research groups for their 
effectiveness in terms of improvement of CAD performance. 

Shape feature, primarily compactness has been used to distinguish non-mass cases 
from the whole case population in previous study. Through observing hundreds 
mammograms, shape feature is found to be essential for detecting masses merging in 
many mass-like normal breast tissues. Most of mass cases are relatively well-defined 
round objects, however, the overall shape of dense normal breast tissues, such as 
glandular elements and blood vessels embedded, are often slender rather than round. 
The simple way of compactness calculation is to divide the area of the segmented 
area by the square of perimeter of the contour. Therefore the compactness of a perfect 
circle is one. The closer the object shape is to a circle, the closer the compactness is to 
one. Compactness calculation is difficult in the first unavoidable and crucial step that 
is to extract a continuous contour so that a precise perimeter of the segmented area 
can be calculated. The difficulty of continuous contour extraction comes from the 
randomness of contour shape and the demand of continuity of contour, even some 
existing methods proposed for continuous contour extraction in some image 
processing books cannot cover all possibilities. If only discontinuous contour is 



needed, the problem becomes very easy since a simple scan of the image can bring us 
a list of contour pixel coordinates. However, a simple task that can be easily done by 
human is sometimes very challenging for a computer program. In order to surmount 
this obstacle, we designed a universal contour extraction method that can deal with all 
possibilities of position relationship between any pixel and its neighboring pixels, 
including all kinds of intersections and branches of one contour. The basic strategy of 
this universal method is that scanning all neighboring pixels of each pixel, 
memorizing all branches around this pixel, deciding which branch is the right the 
direction for obtaining a continuous contour, and deleting pixels that have been 
collected in the contour in order to avoid collecting one same pixel for more than 
once. Such a method made it possible to precisely calculate the compactness. In the 
following sections of this report, we will discuss the experimental results that showed 
that compactness played an important role in the distinction of mass and non-mass 
cases. 

Feature Database Structure Exploration and Neural Network Classifier Design 

3.1 Visual Data Explanation and Mining Tool Design 

Although among many approaches of CAD research, some CAD systems are 
sophisticated and claimed to have impressive performance, several fundamental 
issues remain unsolved. For example, Receiver Operating Characteristics (ROC) can 
provide an overall performance evaluation, but it may not help improve each 
individual component in CAD system. Furthermore, since machine observer and 
human observer may not detect the same set of masses, the black box nature of most 
CAD systems may prevent a natural on-line integration of human and machine 
intelligence and further upgrade of a CAD system. As a strategic move toward 
improving CAD design and utility, we developed a visual data exploration and 
mining tool. Our effort is to (1) provide a visual map of feature database prior to 
knowledge encoding component so as to evaluate and improve the pre-processing and 
signature extraction; (2) based on the resulting map to design an optimal classifier 
best fitted to the particular database structure for knowledge encoding; and (3) 
combine the map, the classifier output, raw image, and user interface to explore and 
explain the whole decision making process by both radiologist and CAD system. 

3.1.1    Discriminative Projection 

Dimension reduction is the first thing on which we spent great effort. There 
are two major reasons why we have to do dimension reduction: (1) visualization 
demand (2) cluster separation. Due to the high dimensionality of the feature dataset 
(in this case, the number of dimensions is nine), it is difficult for visual data mining. 
While it is possible to encode several more dimensions into a graph by using various 
symbols and/or colors, the human perceptual system is not prepared to deal with more 
than three dimensions simultaneously. Principal component analysis (PCA) is an 
effective unsupervised method for achieving dimensionality reduction. Using PCA, 
we can find those orthogonal axes onto which the projections retain maximal 
variance. Thus a lower dimensional new representation of the set of observed vectors 



in the space represented by the principal component axes. However, by examining the 
limitation of PC A, we find that it may not be proper to fulfill our expected role in our 
feature data structure discovery since we not only have to capture maximal 
information from the feature data, but also need to cluster the data points to identify 
the data territory in the space. Another concern is the identification of features among 
all calculated features, which is responsible for cluster separation and further mass 
and non-mass classification. The limitation of PCA is that the dimensions with large 
variances but small cluster separability may play dominant roles in determining the 
projections and further mislead the dimensionality reduction for cluster separation 
purpose. 

We move the conventional PCA to a direction in which it may serve as a 
discriminant criterion so that clusters are to be separated and visualized to meet the 
need of cluster separation. While conventional PCA is an unsupervised method, 
discriminative principal component analysis (DPCA) is a supervised method that is 
applied when prior knowledge of class information has been obtained. Based on the 
class information, a better way of finding directions for cluster separation, however, 
is to emphasize the inter-cluster separation by using Fisher's scatter matrix instead of 
total covariance matrix in conventional PCA. This is a discriminative projection 
searching process, 

W - argmax{Trace(WjS'w
1S(,W0)} 

Wo 

where Sw is the within-cluster scatter matrix, Sb is the between-cluster scatter matrix, 
and W is the optimum projection matrix. This is termed as discriminative principal 
component analysis (DPCA). 
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Fig. 1.  2 -D projections of feature data using conventional PCA 
and DPCA, * ~ mass and 0 — non mass. 

From fig. 1, we can see the difference between projections resulting from 
conventional PCA and discriminative PCA on the effect of cluster separation. In the 
left figure conventional PCA is applied, mass and non-mass data points are mixed 
uniformly without revealing any cluster structure, while mass and non-mass data 
points define clearer distribution structure in the right figure that is resulted from 
discriminative PCA. 



3.1.2    Hierarchical Structure 

The According to Cover's theorem on the separability of patterns, when a data set 
is linearly projected onto a single dimension-reduced subspace, its inherent multi- 
modal nature may be partially or completely obscured. The revelation of growing 
volume of high dimensional and multi-modal data set demands a data mining tool 
differing from conventional data visualization method, which is capable of dealing 
with high dimensional data set. This motivates our consideration of a hierarchical 
visualization paradigm involving hierarchical statistical models and visualization 
space. Comprehensive studies on this issue brought us the possibility of using several 
complementary visualization subspaces to accomplish this complicated task. In this 
algorithm, dimensionality reduction and cluster decomposition are two major 
components. The cluster decomposition permits the use of relatively simple models 
for each local structure, offering great ease of interpretation as well as many benefits 
of analytical and computational simplification. On the other hand, dimensionality 
reduction allows visual explanation of high dimensional data set and less 
computational demand. We proposed using standard finite normal mixtures (SFNM) 
and hierarchical visualization spaces for as effective data modeling and visualization. 
The strategy is that top level model and projection should explain the whole structure 
of the data set, while lower level models explain the local and internal structure 
between individual cluster, which may not be obvious in the high level models. With 
many complementary mixture models and visualization projections, each level will be 
relatively simple while the complete hierarchy maintains overall flexibility yet still 
conveys considerable cluster information. Fig.2. shows an example of a hierarchical 
visualization tree generated using a set simulated data. The left figure is a top level 
projection of the data where we can only see two clusters without incorporating color 
information, the upper right figure is a second level projection that provides different 
views of two sub-clusters selected in the top level projection. In the second level, we 
can see two hidden clusters in sub-cluster #2 in the projection differing from the top 
view, this gives the user opportunities to discover true data structure and makes 
further partitioning possible. 
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Fig. 2. User Interface of Visual Data Exploration and Mining Tool 



3.1.3    User Interaction 

User interaction with the algorithm is also an important issue. We have developed 
a user-friendly graphical interface to facilitate the data visualization purpose, as 
shown in Fig. 1, which allows the user to select initial centers of the data clusters. Our 
experience has convincingly indicated a great reduction of both computational 
complexity and local optimum likelihood. It should be pointed out that although the 
final SFNM model can be estimated, the pathways of achieving cluster decomposition 
may be multiple. For example, in this case the user has the flexibility to select only 
two clusters in the second level and to further split the "right" cluster, thus to adopt a 
three-level hierarchy. We believe that this user-driven nature of the current algorithm 
is also highly appropriate for the visualization context. 

3.2 Feature Database Exploration for Feature Selection and Classifier Design 

As the primary goal of the visual explanation and mining tool development, we 
use it to reveal and explain feature database structure for CAD design purpose. We 
try to make both hidden data patterns and neural network "black box" to be as 
transparent as possible to users, such as radiologists and patients, through interactive 
visual explanation. 

3.2.1 Feature Selection 

We tried to rank and select features that are responsible for differentiating mass 
and non-mass cases. One of advantages of the work is to reduce the computation load 
for classifier via reducing the dimension of the feature dataset. Also, the performance 
of classifier may even be improved if only the features with high discrimination 
power are used while the non-discriminative features are discarded. Although the 
simple method of selecting just the best individual feature without considering 
dimension dependence may fail dramatically, it might still be worthy as a first step. 
We applied our software to model the dataset with an SFNM distribution. Based on 
the distribution model, we can perform DPCA to determine the top discriminative 
principal axes. The nine features were ranked in their discriminative power from high 
to low: energy, sum entropy, compactness, inertia, sum average, entropy, correlation, 
difference entropy, and Inverse difference moment. This result is in turn fully used in 
the classifier design that will be discussed in the following section. 

3.2.2 Neural Network Classifier Design 

In classifier selection and design, feature database structure is the major guidance 
we can depend on. All these approaches have the only important goal that is to 
improve CAD performance in a rational way so that we can explain how we design 
each component of the CAD system, why such an integrated system works or does 
not work, and further explain to radiologists to get feedback on the development, the 
process is fairly transparent to users. Based on the feature ranking, we designed a 
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the three top features together 
can completely represent the full feature dataset in term of classification, and further 
more the performance is even better, which is shown in fig. 3. The Az value of the 
classifier with three inputs is 0.78, for the classifier using all features it is 0.68. 
Although the results are still not very promising, such a design approach is giving us 
much more understanding of how the feature database can be used for classifier 
design. Not only is the success of feature ranking and selection in classifier design 
reflected in the lowering computational cost through dimension reduction, but also 
implies that the combination of top rated feature has more discriminative power in the 
classification. 
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Key Research Accomplishments 

• Improving research skill and enhancing fundamental engineering knowledge through 
book and literature searching and reading under guidance of advisor and mentors. 

• Collecting image cases, processing images by computing image features and constructing 
high dimensional image feature database. 

• Developing and improving visual data explanation and mining tool and exploring feature 
database structure for feature selection and classifier design to make the CAD design 
processing effective and reasonable. 

• Designing classifier and improving classifier performance based on data structure 
exploration and the study of features. 

Reportable Outcomes 

•    Y. Wang, Z. Wang, L. Luo, S-H. B. Lo and M. T. Freedman, "Computer-Based Decision 
Support System: Visual Mapping of Featured Database in Computer-Aided Diagnosis", 
Proc. OfSPIE, Image Processing, Vol. 1, No. 24, pp. 136-147, February 2000. 
Feature extraction programs. 
Visual data exploration and mining tool software. 
J. Lu, Y. Wang, Z. Wang, et. al., "Discriminative Mining of Gene Microarray Data", 

Proc. Of Neural Networks for Signal Processing, pp. 23-32, September, 2001. 

• 

Conclusions 

In this project, we devoted efforts in developing effective feature extraction methods, 
constructing feature database, developing visual explanation tool for data mining and 
knowledge discovery, which is both statistically principled and visually effective. This 
method, as illustrated by the well-planned simulations and pilot applications in computer- 
aided diagnosis, can be very capable of revealing hidden structure within data. It is 
important to emphasize that in relation to previous work, one interesting consideration 
with the present algorithm is that the models are determined by the information theoretic 
criteria, and this criterion can not only select the most appropriate model structure but 
also allow a user-driven portfolio as a double check. This approach promotes a self- 
consistent fitting of the whole tree, so that an automated procedure for generating the 
hierarchy becomes reality. In addition, since we perform model selection and parameter 
initialization firstly over the projection space, the computational complexity is greatly 
reduced in compared to the maximum likelihood estimation in full dimension. Other 
possible advantages include the determination of data projection by maximizing the 
separation of clusters, which in turn optimizes the other crucial operations such as model 
selection and parameter initialization, which help user find hypothesis driven nature of 
the data projection. Using the visual explanation tool, we tried to discover the feature 
database structure for feature selection and also classifier design. The performance of the 
classifier reflected that the feature selection based on feature ranking also makes it 
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possible to reduce dimensionality in classifier design besides in visual data exploration 
software. 
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Featured Database in Computer-Aided Diagnosis 
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ABSTRACT 

As a strategic move toward improving the utility of computer-aided diagnosis (CAD) in breast cancer detection, this 
work aims to develop a computer-based decision support system, through a visual mapping of featured database, 
to explain the entire decision making process jointly by the computer-encoded knowledge and the user-interaction. 
The main purpose of the work is twofold: enhance the clinical utility of CAD and provide a mechanism for optimal 
system design. We adopt a mathematical feature extraction procedure to construct the featured database from 
the suspicious mass sites localized by the enhanced segmentation. The optimal mapping of the data points is then 
obtained by learning a hierarchical normal mixtures and associated decision boundaries. A visual explanation of 
the decision making is further invented through a multivariate data mining and knowledge discovery scheme. In 
particular using multiple finite normal mixture models and hierarchical visualization spaces, new strategy is that 
the top-level model and projection should explain the entire data set, best revealing the presence of clusters and 
relationships, while lower-level models and projections should display internal structure within individual clusters, 
such as the presence of subclusters, which might not be apparent in the higher-level models and projections. We 
demonstrate the principle of the approach on several multimodal numerical data sets, and we then apply the method 
to the visual explanation in CAD. for breast cancer detection from digital mammograms. 

1. INTRODUCTION 

In order to improve mass detection and classification in clinical screening and/or diagnosis of breast cancers many 
sophisticated computer-assisted diagnosis (CAD) systems have been recently developed. Although the chnical roles 
of the CAD systems may still be debatable, the fundamental role should be complementary to the radiologists 
clinical duties or for automated high risk population screening. Literature survey has indicated that (1) most GAL» 
systems are "black" boxes to the users and (2) no working link between «evaluation" and «improvement . This 
paper addresses the further development of CAD for mass detection based on (1) construction of featured knowledge 
database; (2) mapping of classified and unclassified data points; and (3) development of a visual exploration and 

explanation interface. 
Although many previously proposed approaches have led to impressive results, several fundamental issues remain 

unresolved For example, Receiver Operating Characteristics (ROC) analysis can provide an overall performance 
evaluation, it may not help the improvement of each of the multiple components in CAD system Furthermore since 
the machine observer and human observer may not detect the same set of masses, the «black box nature of most 
CAD systems may prevent a natural on-line integration of human intelligence and further upgrade of a CAD system. 
Our effort is to: (1) provide a visual map of featured database before knowledge encoding component so to evaluate 
and improve the pre-processing and signature extraction; (2) based on the map to design an optimal ck^sifier best 
fitted to this particular database structure for knowledge encoding; and (3) combine the map, the classifier output^ 
raw image, and user interface to explore and explain the whole decision making process by both radiologist and CAU 

systems. 

Further author information: Send correspondence to Y. Wang (E-mail wang@pluto.ee.cua.edu). 

In Medical Imaging 2000: Image Processing, Kenneth M. Hanson, Editor, 
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2. BACKGROUND 
As the first step toward understanding multivariate data sets, cluster information reveals insight that may prove 
useful in knowledge discovery since the growing volume of complex data are often high dimensional, multimodal, 
and lacking in prior knowledge..4"6'9 Several new visualization methods have been progressively developed to model 
and display the contents of the data sets.4'6"9'11'14 However, although such algorithms can usefully characterize 
the content of simple data sets, little comprehensive study has been reported that proves adequate in the face of 
multimodal and high dimensional data sets.4-9'14 For example, a single projection of the data onto a visualization 
space may not be able to capture all of the interesting aspects of the data set. This motivates the consideration of a 
hierarchical visualization paradigm involving hierarchical statistical models and visualization spaces. 

Once we explore the possibility of using many complementary visualization subspaces, cluster decomposition 
and dimensionality reduction are the two major steps. Cluster decomposition permits the use of relatively simple 
models for each of the local structures, offering greater ease of interpretation as well as the benefits of analytical and 
computational simplification. On the other hand, dimensionality reduction allows better visual interpretation and less 
computational demand. Many researchers have recently proposed various methods to improve data visualization.6'9 

The work most closely related to our methodology was reported by Bishop and Tipping in.4-12 They introduce a ' 
hierarchical modeling and visualization algorithm based on a two-dimensional hierarchical mixture of latent variable 
models, whose parameters are estimated using the expectation-maxirnization (EM) algorithm.4'19 The construction 
of the hierarchical tree proceeds top down in which the cluster decomposition is driven interactively by the user, and 
optimal projection is determined by maximum likelihood principle. 

In this paper, we propose using standard finite normal mixtures (SFNM) and hierarchical visualization spaces for 
an effective data modeling and visualization. The strategy is that the top-level model and projection should explain 
the entire data set, best revealing the presence of clusters and relationships, while lower-level models and projections 
should display internal structure within individual clusters, such as the presence of subclusters, which might not be 
apparent in the higher-level models and projections. With many complementary mixture models and visualization 
projections, each level will be relatively simple while the complete hierarchy maintains overall flexibility yet still 
conveys considerable cluster information. Based on the concept of combining finite mixture modeling19 and principal 
component projection4'14 to guide cluster decomposition and dimensionahty reduction, the particular advantages of 
our algorithm are: 

1. At each level, a probabilistic principle component extraction is performed to project the softly partitioned data 
set down to a two-dimensional visualization space, leading to an effective dimensionahty reduction, allowing 
effective separation and visualization of local clusters4,8'15; 

2. Learning from the data directly, information theoretic criteria are used to select model structures and estimate 
its parameter values, where the soft partitioning of the data set results in a standard finite normal mixture 
distribution best fitted to the data7'21-25; 

3. By alternatively r^rforming principal component projection and finite mixture modeling, a complete hierarchy 
of complementary projections and refined models can be generated automatically, allowing a new paradigm of 
knowledge discovery.4-6'9 

3. THEORY AND METHOD 
One of the difficulties inherent in data visualization is the problem of visualizing multi-dimensionahty.4'6'9 When 
there are more than three variables, it stretches the imagination to visualize their relationships. Fortunately in data 
set with many variables, groups of variables often form clusters.13'15-16 Thus, our approach includes two major 
complementary components: (1) dimensionahty reduction by probabilistic principal component projection and (2) 
cluster decomposition by adaptive soft data clustering. 

Assume the data points {t*} in the data space come from KQ clusters {ötl,...,ötfc,...,0tifo}, where 0tk is the 
^aussian kernel parameter vector of cluster k in the model. Recently there has been considerable success in using 
me SFNM to model the distribution of a multimodal data set,4'7-10'19'26 such that the data distribution takes a sum 
°i the following general form: 

P(t) = X>fc<7(t|0tfc) 
fc=i 

(1) 
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where irk is the corresponding mixing proportion, with 0 < xt < 1 and J]7rfc = 1, and g is the Gaussian kernel. 
The problem of SFNM modeling addresses the combined estimation of regional parameters (7rjb,0t*) and detection 
of structural parameter KQ in Eq. (1) based on the observations t. One natural criterion used for estimating 
the parameter values is to minimize the distance between the SFNM distribution /(t) and the data histogram ft. 
Suggested by information theory,19,20 relative entropy (Kullback-Leibler distance) is a suitable measure, given by 

£(/t!!/) = £/t(t)iog^|. (2) 

We have previously shown that distance nrinimization based on (2) is equivalent to the maximum likelihood (ML) 
estimation under a data independency approximation,7 and when KQ is given, the ML estimate of the regional 
parameters can be obtained using the EM algorithm.15,19'26 

There are three major problems associated with the current approach. First, when the dimension of the data 
space is high, the computational complexity of implementing the EM algorithm in t-space is very high. Second, the 
initialization of the EM algorithm is often heuristically chosen, which may lead to both local optima and compu- 
tational complexity. Finally, since the number of the local clusters in a particular data set is generally unknown, 
model selection is a prerequisite. A natural way, with greater practical applicability, to tackle these problems is to 
introduce user interaction with the system.4,9 Data mining and knowledge discovery are not processes that can be 
orchestrated a priori. Training algorithms and expected behavior can be specified, but the actual learning must follow 
for insight and spontaneous inspiration.9 For example, by examining plots of principal component space, researchers 
often develop a deeper understanding of the driving forces that generated the original data, and effortlessly grasp 
the general characteristics of the data and propose an initial solution.4,6,9 

Principal component analysis (PCA) is an effective method for achieving dimensionality reduction.11,12 For 
a set of observed d-dimensional data vectors {ti}, i € {l,...,iV}, the q principal axes wm, m e {l,...,q}, are 
those orthogonal axes onto which the retained variance under projection is maximal. It can be shown that the 
principal axes wm are given by the q dominant eigenvectors (i.e., maximal eigenvalues) of the sample covariance 
matrix Ct=J2i(ti — Mt)(*» — A*t) lN such tnat Ctwm — An,wm and where fit is the sample mean. The vector 
Xi = WT(ti — /it), where W = (w1,w2,...,wg), is thus a q dimensional reduced representation of the observed 
vector tj. The advantage of PCA is twofold: the projection onto the principal subspace (1) rninimizes the squared 
reconstruction error12,15 and (2) maximizes the separation of data clusters.16 Although the effectiveness of applying 
PCA in an unsupervised manner is highly data-dependent, our approach has a simple optimal appeal in that if the 
local clusters are linearly separable in a two- or three-dimensional space, the principal component projections allow 
best separation of the clusters.16 

Suppose the data space is «i-dimensional. Now consider a two-dimensional projection space x = (xj, 0:2 )T together 
with a linear transformation, that maps the data space to the projection space by x = WT(t — ^) where W is a 
d x 2 matrix. For a normal distribution p(t) over the data space, using the rules of probability, a similar reduced 
dimension probability distribution of the new variables {XJ} in the projection space is obtained from the convolution 
of the projection model with the true distribution over data space in the form of /(x) = /p(xjt)p(t)crt.4'12'17 Since 
the conditional distribution p(x]t) = <$(x - WTt + WT/zt), where 5{.) is the delta function that 5(0) = 1 and 
c5(^ 0) = 0, it can be shown that /(x) is simply denned by the Radon transform of p(t), i.e., /(x) = jp(t)6(x - 
W^t + W /*t)dt.18 According to the linear superposition property of Radon transform and the projection invariant 
property of normal distribution, if p(t) is a SFNM distribution, the data distribution in the projection space has a 
similar reduced dimension form as Eq. (1) 

/(x) = ][>fc / g(t\0tk)6(x - WTt + WT^)dt =][>*<7(x|0xfc). (3) 
k—1     J 1 1 

However, because of its global linearity, the application of PCA is necessarily somewhat limited.12'13 For 
example, the inherent multimodal nature of the data set may be completely obscured when it is projected onto the 
lower dimensional principal subspace. Thus, it is important to note that although the cluster structure of the data set 
may be evident from the higher dimensional plot of the raw data, it is quite conceivable to have the intrinsic cluster 
structure of the data concealed after a projection in the more general case of high-dimensional data sets.15    An 
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alternative paradigm is to model multimodal data set with a collection of local linear subspaces through probabilistic 
rjücipal component analysis as shown in Fig. I.12-14 The method is a two-stage procedure: a soft partitioning of 

the data space followed by estimation of the principal subspace within each partition. For the sake of computational 
simplicity, it is reasonable to consider the model parameter values being estimated firstly in the projection space and 
then further fine tuned in the data space.14 

The association of a SFNM distribution with PCA offers the possibility of being able to visualize complex data 
structures through a mixture of probabilistic principal component subspaces. By a simple extension of the maximum 
a posterior for data classification in the standard Kg-axy Bayes hypothesis testing,15'20 we can obtain a principal 
component projection along the desired axes onto which a particular portion of the data set is highlighted, by 
weighting all of the data points in the whole data set with their posterior probabilities belonging to that portion. 
This involves a soft clustering of the data points in which instead of any given data point being assigned exclusively 
to one principal component subspace, the responsibility for its generation is shared among all of the subspaces. 

Under the SFNM model defined by Eq. (1), the posterior Bayesian probability Zik of a given data point tj 
belonging to cluster k is 

""-m- (4) 

where k = 1,2, ...,KQ and X)izi* = *- These posterior probabilities, together with the computational simplicity 
of performing PCA (involving no more than finding the top q eigenvectors of the covariance matrix of the data 
points) make it a good candidate for the linear subspace in the mixture. The q principal components define the 
local subspace assumed for the multimodal. The contributions of the input to the k subspace are the activities of 
the weighted data points {t^} for input cluster k. This can be obtained by tu = Zik(ti — A*tfc)> where /u,.fc is the 
weighted sample mean of cluster k: 

„    _ T,i2^i        r   _Si *»(*< ~ lhk)(*i ~ Mu)T ,,x 
A*tfc - -r^——>       ^tfc- ^—  (o) 

/ ..j zik 2—ii zik 

The subspaces for the focused clusters are generated by a localized linear PCA such that CtiWmfc = Amtwmi. It 
is important to understand that each component in Eq. (1) now corresponds to an independent subspace model with 
parameters ö** and Wfc, where Wk= (wlfc,w2fc,...,w,fc). More precisely, consider the vector x^t — 2ikW£(ti —/i^)' 
to be a q dimensional reduced representation of A-cluster focused vector t^, the corresponding probability distribution 
is defined by 

5(x|Wfc, 9xk) = J g(t\ßtk)S(x - Wjt + W^tfc)dt (6) 

where the data mapping by W^ leads to an independent Radon transform. To interpret the corresponding set 
of visualization subspaces, it may be useful to plot all of the data points on every plot. For this, we may create 
a fc-cluster focused projection in fc-subspace by plotting the vector x^, or display the density of "gray-level" in 
proportion to the contribution which each point has for A-subspace with h[W^(ti — ntk)] = Zifc- 

An important issue concerning unsupervised cluster decomposition is the detection of the structural parameter KQ, 

called model selection.7'14'15'19'25 This is indeed particularly critical in real-world applications where the structure of 
the data patterns may be arbitrarily complex.5 We propose to use two information theoretic criteria, i.e., the Akaike 
information criterion (AIC)21 and minimum description length (MDL) ,22 to guide model selection. The major thrust 
of this approach has been the formulation of a model fitting procedure in which an optimal model is selected from 
the several competing candidates such that the selected model best fits the observed data, under Jaynes' minimax 
entropy principle stated as "the parameters in a model which determine the value of the maximum entropy should 
be assigned values which minimize'the maximum entropy".23'24 For example, AIC tries to reformulate the problem 
explicitly as an approximation of the true structure by the model, implying that AIC will select the model that gives 
the TninJTnnm, value defined by 

AIC(Ka) = -21og(£ML) + 2Ka (7) 

where CML is the maximum likelihood of the model and Ka is the number of free adjustable parameters in the model. 
Prom a quite different point of view, MDL reformulates the problem explicitly as an information coding problem in 
which the best model fit is measured such that it assigns high probabilities to the observed data while at the same 
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time the model itself is not too complex to describe.22 A model is selected by minimizing the total description 
length defined by 

MDL(Ka) = -log(£ML)+0.5Ka log N. (8} 

where the penalty term in MDL takes into account the number of observations. It should be pointed out that when 
the cluster separability is poor, the performance of these two information theoretic criteria may not be reliable.21'25 

As discussed above, the SFNM model identification is first performed over x-space. However, a mapping from 
t-space to x-space may have the intrinsic cluster structure concealed, leading to an incorrect correspondence between 
Eq. (1) and Eq. (3). We now extend the mixture representation of Eq. (1) to form a hierarchical mixture model 
generally enough to be applicable to mixtures of any parametric density model. Based on the discussion of a two-level 
system consisting of a single Radon transform at the top level and a mixture of K0 normal distributions at the second 
level, we can reformulate the hierarchy to a third level by associating a group Qk of SFNM models with each model 
A; in the second level, given by 

POO = £*fc Y^ *j\k9(t\0t(kj)) (9) 
fc=l     j=a 

» 
where ir^k again correspond to a set of mixing proportions, one for each k, with ]£\ ir^k = 1. The formation of the 
hierarchy is guided by the model selection over x-subspaces, where each level of the hierarchy corresponds to a generic 
model, with lower levels giving more focused and interpretable representations. Once again each component in Eq. 
(9) now corresponds to an independent subspace model with Radon transform g(x\$x(kj)) = f 9(tfQt(kj))6(x ~ 

4. ALGORITHMS 

Based on the theory behind hierarchical mixtures of probabilistic principal component subspaces we have discussed 
above, we now present the description of our algorithm involving major steps of the visual hierarchy construction. 
Although the tree structure of the hierarchy may be empirically defined,4'12 a more interesting effort, is to build the 
tree automatically and interactively. Guided by the two information theoretic criteria, our algorithm progressively 
proceeds by fitting a series of submodels to the clusters of the data set, in which model order is selected automatically 
and algorithm initialization is driven interactively. A schematic summary of the algorithm is as follows: 

1. Project the data set onto a single x-space, in which W is determined from the sample covariance matrix Ct 
by fitting a single Gaussian model to the data set over t-space. 

2. Learn /(x) for K — KMIN,—,KMAX,. hi which the values of -Kk and ox* are initialized by the user and 
estimated by the EM algorithm over x-space. 

3. Calculate the values of AIC and MDL for K = KMIN, •••» KM AX, and select a model with KQ which corresponds 
to the minimum of AIC and MDL. The model parameters obtained in x-space will be used to initialize the 
model parameters in t-space for the learning in step 4. 

4. Learn /(t) with Ko, in which the values of irk, Zik, f*tki ail(^ Ct*, are fine tuned by the EM algorithm over 
t-space.. 

5. Determine W* from t^ or Ctjk, and plot Xjfc or A[Wj(ti — ptk)] onto x-subspaces at the second level for visual 
evaluation, for k — 1,2,..., KQ. , 

6. Learn öfc(t) by repeating steps 2 — 4 and construct x-subspaces at the third level by repeating step 5, for 
* = 1,2, ...,#<,. 

7. Complete the whole hierarchy under the information theoretic criteria, and plot all x-subspaces for visual 
exploration and explanation. 
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Our algorithm begins by determining W for the top level projection. For low dimensional data sets, we directly 
evaluate the covariance matrix Ct to find W.13'15 For high dimensional cases, since only the top two eigenvectors 
of the covariance matrix of the data points are of the interest, it may be computationally more efficient to apply our 
previously developed APEX neural networks8 to find W directly from the data points t» (Step 1). On the basis of 
this single x-space, given a fixed K, the user then selects {KMIN, KM AX) and points fi^ on the plot corresponding 
to the centers of apparent clusters. The EM algorithm can be applied to allow a SFNM (Eq. (3)) to be fitted to the 
projected data through the following two-stage19'26 form: 

E-Step 

zik 

M-Step 

>+i) 1   N 

■ik   > #1} = 
Et z{n) 

Xi 

i=l 
~>N       (n) 

C(«+l) _ l£lz*(Xi-Ml2!)(Xi 
■'xk 

Pxk) 

S£i- ■ik 

(10) 

(11) 

where at each complete cycle of the algorithm, we first use "old" set of parameter values to determine the posterior 
probabilities z£ using Eq. (10). These posterior probabilities are then used to obtain "new" values irk

n+1\ A*j^.+1\ 
and C^k

+ using Eqs.(ll). The algorithm cycles back and forth until the value of relative entropy (Eq. (2)) reaches 
its minimum (Step-2). It can be shown that, at each stage of the EM algorithm, the relative entropy decreases unless 
it is already at a local minimum.19 The model selection procedure will then determine the optimal number KQ of 
models to fit at the next level down using the two information theoretic criteria, where Ka — &KQ — 1 including 2KQ 

means, 2KQ variances, K0 correlation coefficients, and KQ - 1 mixing factors (Step 3). The resulting points p$? in 
data space, obtained by ft\.k' = W/*^ +fit, axe then used as the initial means of the respective submodels. Since 
the mixing proportions irk are projection-invariant, we simply assign a 2 x 2 unit matrix to the remaining parameters 
of the covariance matrix Ctk. Once again the EM algorithm can be applied to allow a SFNM (Eq. (1)) with KQ 

submodels to be fitted to the data over t-space. In order to obviate the need to store all the incoming observations, 
and change the parameters immediately after each data point, it may be computationally more efficient to apply our 
previously, developed probabilistic self-organizing map (PSOM), an incremental EM algorithm,7 to estimate p(t). 

With a soft partitioning of the data set using the PSOM, data points will now effectively belong to more than one 
cluster at any given level. Thus, the effective input values are tik — zik{ti — /xtfc) for an independent visualization 
subspace k in the hierarchy. We then extend our APEX algorithm to a probabilistic version, i.e., PAPEX,8'27 to 
determine Wfc, summarized as follows (Step 4). 

M 

m 

1. Initialize the feedforward weight vector wmfc for m = 1,2, and the feedback weight vector a*, to small random 
values at time i — 1. Assign a small positive value to the learning rate parameter 77. 

2. Set m = 1, and for i = 1,2,..., compute 

ylk(i) = yrJ^ZikiU - fit*.),    wifc(i + 1) = wu(i) + v[yik(i)zik(ti - mk) - 3/ffc(i)wu(z)] (12) 

For large i we have wlk(i) —>• w^, where wu is the eigenvector associated with the largest eigenvalue of the 
covariance matrix Cfc. 

3. Set m = 2, and for i = 1,2,..., compute « 

2/2*(i) = wjfc(i)«ifc(ti - Mtjfe) + ak(i)yik(i),    w2fc(i + 1) = w2fc(i) + ■n[y2k{i)zik(ti - fitk) - 2/ifc(i)w2*(i)] (13) 

ak(i + 1) = ak(i) - T)[y2k(i)yik{i) + s£fc(*)ak(*)] (14) 

For large i we have W2jt(i) —> W2fc, where W2jt is the eigenvector associated with the second largest eigenvalue 
of the covariance matrix Cfc. 

141 



Having determined principal axes Wk of the mixture model at the second level, we will construct the visualizatio 
subspaces by plotting each data point t* at the corresponding x«. Thus if one particular point takes most of th* 
contribution for a particular component, then that point will effectively be visible only on the corresponding subspac! 
(Step 5). 

Determination of the parameters of the models at the third level can again be viewed as a two-step estimation 
problem, in which further split of the models at the second level is determined within each of the subspaces over 
x-space, and then the parameters of the selected models are fine tuned over t-space. Similarly, the resulting model 
estimated over x-space are then used to initialize the means of the respective submodels over t-space. The cor 
responding Gk(t) can again be estimated using the EM or PSOM algorithm7'19-26 to allow a SFNM distribution 
with Lkfi submodels to be fitted to the data. In the E-step, the posterior probability that data point t* belongs to 
submodel j is given by 

Zi(M-^Jffc-^    g{HOtk)    - (15) 

where zik are constants estimated from the second level of the hierarchy. The corresponding M-step includes 

*3lk ~      „AT    ,        '      f^ikJ) ~ ~^N >      Ct(*j) =  .y  L^!—. (16 

With the resulting zi{ktj) in t-space, we can apply the PAPEX algorithm to estimate W(fcJ), in which the effective 
input values are expressed by ti(fc)i) = ^^(tj- A*t(*,,))• The next level visualization subspace is generated by 
plotting each data point t* at the corresponding xi(fcii) = zi{kJ)Wjk)j)(ti - t*t(kj)) hi (*, j)-subspace (Step 6). 

The construction of the entire tree structure hierarchy is automatically completed when no further data split is 
recommended by the information theoretic criteria in all of the parent subspaces (Step 7). 

5. ILLUSTRATION AND APPLICATION 

We first illustrate the application of our algorithm to a simple synthetic data set. Fig. 1 (a) shows a data set 
consisting of 450 data points generated from a mixture of three Gaussians in three-dimensional space. Each Gaussian 
is relatively fiat (has small variance) in one dimension. Two of these pancake-like clusters are closely spaced, while 
the third is well separated from the first two. The dimensionahty of this data set has been chosen to illustrate the 
basic principle of the approach. The global view of the raw data over t-space clearly suggests the presence of three 
distinct clusters within the data. 

;, • 
To explore the data characteristics, we first perform a single global PCA to project each data point onto a single 

x-space (top level), shown in Fig. 1 (b). Both the user inspection and the two information theoretic criteria have 
clearly suggested the presence of two distinct clusters within the projected data set. Based on a soft clustering of the 
data points, we then apply PAPEX to both clusters and generate the two corresponding independent cluster-focused 
subspaces (second level), as shown in Fig. 1 (c). Not to our surprise, the two information theoretic criteria have 
suggested a further split of cluster 2 but not of cluster 1. Once again by performing three independent PAPEX, the 
final cluster decomposition through the cluster-focused subspaces (third level) is completed shown in Fig. 1 (d). 

With this three-level hierarchical data exploration, the capable nature of the approach is evident as the interim 
two subspaces (second level) only attempt to highlight the data points which have already been modeled by their 
immediate ancestor (top level). Indeed, the model fitting procedure has successfully discovered all three data clusters. 
The original data clusters have been individually colored, and it can be seen that the red, yellow, and blue data 
points have been well separated and highlighted in the third level subspaces. * 

As an example of a more complex problem, we consider a data set arising from a mixture of three closely spaced 
Gaussians consisting of 300 data points, shown in Fig. 2 (a). Once again the original data clusters have been 
individually colored. We first apply APEX to extract the global principal axis, indicated by the black line in Fig. 2 
(a). The two information theoretic criteria have suggested the presence of three distinct clusters, where the user then 
selects three initial cluster centers and the EM/PSOM algorithm is applied to perform a soft clustering of the data 
points. This leads to a mixture of three independent probabilistic principal component subspaces whose principal 
axes are separately extracted, indicated by the yellow lines in Fig. 2 (a). The contributions of each data point to 
these subspaces, in terms of its "gray-level" h[U] = Zik, are displayed over t-space in Fig. 2 (b). 
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Since the model selection and algorithm initialization are performed over x-space with user's interaction, it may be 
helpful to investigate the visual effectiveness of dimensionality reduction using the probabilistic principal component 
projections.4,9 Based on the estimated Wfc) we have constructed each of the cluster-focused subspaces using both 
"data graphics" (e.g., in terms of x,-* = ZüW^t*-/^)) and "data image" (e.g., in terms oEh\Wg(ti-iitk)] = zik) 
techniques- As a more overlapped case, Fig. 2 (c-d) present the plots of "data graphics" and "data image" from the 
data set, where "data graphics" emphasizes the contribution of a particular data point to that particular subspace 
concerning its geometric distance to the center of the cluster, while "data image" emphasizes the effectiveness of a 
data point reflecting its global appearance. It can be seen that the plot of each cluster is clean and well-shaped. 

In order to quantitatively evaluate the effectiveness of our approach with user interactions,9 we apply our 
algorithm to a synthesized testing data set given in Fig. 3 (up-left). Using the APEX algorithm we accurately 
estimate the top global principal axis, indicated by the back line. By projecting the data points onto a two- 
dimensional x-space, all three data clusters are visible. This plot indicates that although the second advantage of 
PCA forementioned is highly data-dependent, when the data clusters are linearly separable in a projection space, 
the principal component projections allow effective separation of the clusters.16 We then apply the two information 
theoretic criteria to examine this plots. In this case, we set KMIN = 1 and KMAX = 5- The miniT^a. of both AIC 
and MDL have clearly suggested a three-cluster data structure, as given by the curve in Fig. 3 (third block in the 
second row). Thus a two-level SFNM model may be sufficient. We then conduct two experiments to assess the 
performance of our algorithm. Since all the model parameters are known in this case, the true top principal axes of 
the data clusters have been individually calculated. First, we compare the estimated top principal axes of the data 
clusters using our algorithm with the corresponding true top principal axes. From the down-right block in Fig. 3, it 
can be seen that the two sets of the top principal axes are perfectly matched (blue lines). Second, we use the global 
relative entropy (GRE) between the data histogram and the estimated SFNM model to measure the goodness of 
model fitting. The numerical result through our experiments indicates a very good performance with a GRE value 
of 0.008 nats. 

User interaction with the algorithm is an important issue. We have developed a user-friendly graphical interface 
to facilitate the data visualization purpose, as shown in Fig- 3. By allowing the user to select the initial centers 
of the data clusters demonstrated in Fig. 3, our experience has convincingly indicated a great reduction of both 
computational complexity and local optimum likelihood. For example, compared to the results of model selection 
reported by Akaike21 and Wax,25 the curves of the AIC and MDL generated by our algorithm are much more 
consistent and smooth, and user-initialized computation is five times (in average) faster than the random trials. It 
should be pointed out that although the final SFNM model can be estimated, the pathways of achieving cluster 
decomposition may be multiple. For example, in this case the user has the flexibility to select only two clusters in 
the second level and to further split the "right" cluster, thus to adopt a three-level hierarchy. We believe that this 
user-driven nature of the current algorithm is also highly appropriate for the visualization context.4'14 

Since a more convincing example should involve more clusters with multiple levels, we have also applied our 
algorithm to the same data set used by Bishop&Tipping,4 shown in Fig. 4 (a). This data set arises from a 
noninvasive monitoring system used to determine the quantity of oil in a multiphase pipeline containing a mixture 
of oil, water, and gas.4 The experiment gives 12 diagnostic measurements in total. Our interim goal is to visualize 
the structure of the data in the original 12-dimensional space. A data set consisting of 1,000 points is obtained 
synthetically and the data is expected to have an intrinsic dimensionality of two corresponding to the two dominant 
components (e.g., oil and water). However, the presence of different flow configurations leads to numerous distinct 
clusters. We then apply our algorithm to perform a cluster discovery. Results from partially fitting the oil flow data 
using a three-level hierarchical model are given in Fig. 4. It should be pointed out that since the "right" answer to 
this real-world data set is not available, we are not able to validate this new result. However, we believe that this 
example has clearly been highly successful, note how the selected single cluster (number 2) in the top-level plot, is 
discovered to be two quite separated clusters at the second level. 

As a final example, we consider the visual explanation in computer-aided diagnosis (CAD) for breast cancer 
detection. As a step toward improving the performance of CAD system, we have put considerable efforts to conduct 
■various studies and develop reliable image enhancement and lesion segmentation techniques.7 More precisely, we try 
to make both the hidden data patterns and the neural network "black box" to be as transparent as possible to the 
user (e.g., radiologists and patients) through interactive visual explanation. The clinical goal is to eliminate the false 
positive sites that correspond to normal dense tissues with mass-like appearances through featured discrimination. 
We adopt a mathematical feature extraction procedure to construct our database from all the suspicious mass sites 
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localized by the enhanced segmentation.7 The optimal mapping of the data points is then obtained by learning the 
generalized normal mixtures and decision boundaries, where a probabilistic modular neural network is developed to 
carry out both soft and hard clustering.7 The joint histogram of the featured database extracted from true and false 
mass regions are investigated and the features that can better separate the true and false mass sites are selected.7 

Our experience has suggested that three imagery features, i.e., site area, compactness, and difference entropy, were 
having good discrimination and reliability properties. 

We then use our previously developed algorithm7 to distinguish the true masses from false masses based on the 
features extracted from the suspected regions. 150 mammograms were selected from the mammogram database. 
Each mammogram contained at least one mass case of varying size and location. The areas of suspicious masses were 
identified following the proposed procedure with biopsy proven results. In a typical experiment, we have selected 
a three-dimensional feature space consisting of compactness I, compactness II, and difference entropy. It should 
be noticed that the feature vector can easily extend to higher dimensionality. A training feature vector set was 
constructed from 50 true mass ROIs and 50 false mass ROIs, where ROI stands for region of the interest In addition 
to the decision boundaries recommended by the computer algorithms, a visual explanation interface has also been 
integrated with hierarchical projections. Fig. 5 (a) shows the database map selection with compactness definition I 
and difference entropy.- Fig. 5 (b) shows the database map selection with compactness definition II and difference 
entropy. Our experience has suggested that the recognition rate with compactness I are more reliable than that with 
compactness II. 

We have conducted a preliminary study to evaluate the performance of the algorithms in real case detection, in 
which 6 — 15 suspected masses per mammogram were detected and required further clinical decision making. We 
found that the proposed visual explanation approach, together with CAD system, can reduce the number of suspicious 
masses with a sensitivity of 84% at a specificity of 82% (1.6 false positive findings per mammogram) based on the 
database containing 46 mammograms (23 of them have biopsy proven masses). Fig. 6 shows a representative mass 
detection result on one mammogram with a stellate mass, indicated by the arrow in Fig. 6 (a). After appropriate 
feature extraction, ten sites with brightest intensity were selected, shown in Fig. 6 (b). The featured vectors of these 
candidates were submitted against the estimated "probability cloud" for visual explanation as a decision support, 
together with the opinion recommended by our CAD system. The final results indicated that the stellate mass lesion 
was correctly detected, confirmed by our experience radiologists, shown in Fig. 6 (c). It should be pointed out that 
in this real-world application, a higher recognition rate may be controlled by the domain experts in balancing the 
trade-off between the false positive and false negative rates.7 

6. DISCUSSION 

We have presented a novel approach to visual explanation for data mining and knowledge discovery, which is both 
statistically principled and visually effective. This method, as illustrated by the well-planned simulations and pilot 
applications in computer-aided diagnosis, can be very capable of revealing hidden structure within data. It is 
important to emphasize that in relation to previous work,4'11-13 one interesting consideration with the present 
algorithm is that the models are determined by the information theoretic criteria, and this criterion can not only 
select the most appropriate model structure but also allow an user-driven portfolio as a double check. This approach 
promotes a self-consistent fitting of the whole tree, so that an automated procedure for generating the hierarchy 
becomes reality.4 In addition, since we perform model selection and parameter initialization firstly over the projection 
space, the computational complexity is greatly reduced in compared to the maximum likelihood estimation in full 
dimension. Our case study of a seven dimensional data set has indicated at least a 50% reduction of the computational 
time. Other possible advantages include the determination of data projection by maximum the separation of clusters 
which in turn optimizes the other crucial operations such as model selection and parameter initialization,16 and 
data rendering algorithms which permit user or hypothesis driven nature of the data projection.14 
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